

Mesenteric Reactivity

Version: 1 Modified from: Zhao *et.al.* Am J Physiol Regul Integr Comp Physiol. 2005 Jan;288(1):R188-96. Edited by: Dr. Rutledge, UC Davis

Summary Reagents and Materials Protocol Reagent Preparation Reagent 1: Krebs-Physiological Salt Solution

Summary: Impaired endothelium-dependent relaxation is associated with hypertension and diabetes. This protocol measures mesenteric microvessel endothelium-dependent dilation.

Reagents and Materials:

Reagent/Material	Vendor	Stock Number
Dissecting microscope, Stereo Zoom 5	Leicia microsystems	
Microvessel myograph	Jules Osher	
Force transducer: Fort10 transducer	World Precision Instruments	
acetylcholine	Sigma	A2661
N ^G -monomethyl-1-arginine	Sigma	M7003

Protocol:

WARNING:

All blood components and biological materials should be handled as potentially hazardous. Follow universal precautions established by CDC when handling and disposing of infectious agents.

- 1. Mice are anesthetized with an intraperitoneal injection with 50 mg pentobarbital/kg weight.
- 2. The mesenteric bed, including arteries and veins, is cut away from the intestinal wall.
- 3. Small mesenteric arteries (150–200 μ M passive ID at 60 mmHg) are dissected free from connective tissue and fat in cold Krebs-physiological salt solution
- 4. Individual arteries are mounted on glass micropipettes, pressurized to 60 mmHg in Krebsphysiological salt solution at 37°C, and allowed to equilibrate for 30 min.
- 5. Experimental protocols were performed, each separated by 20 to 30 minutes during which the vessel-bathing medium was exchanged with NPSS several times.
 - a. Endothelium-dependent vasodilator (acetylcholine; 10^{-8} to 10^{-4} mol/L)

- b. Single dose $(5*10^4 \text{ mol/L})$ of N^{G} -monomethyl-l-arginine (L-NMMA; an inhibitor of nitric oxide synthase)
- 6. Percent relaxation curves are expressed as the difference in diameter at each dose relative to the baseline, pre-constricted diameter (0%), and the passive diameter (100%).

Reagent Preparation:

Reagent 1: Krebs-Physiological Salt Solution

(in mM, pH 7.4): 119.0 NaCl, 25.0 NaHCO₃, 4.6 KCl, 1.2 KH₂PO₄, 1.2 MgSO₄, 1.8 CaCl₂, and 11.0 glucose